School of Precision Instrument and Optoelectronics Engineering
Professor
光学工程
27402450
27404204
huminglie@tju.edu.cn
Ultrafast Laser Laboratory,, School of Precision Instruments and Opto-electronics Engineering, Tianjin University, 300072 Tianjin, China
Minglie Hu received the B.S. degree in optoelectronics and the Ph.D. degree in optical engineering from Tianjin University, Tianjin, China, in 2000 and 2005,respectively.
He is currently a Professor at Tianjin University.He is the author of more than 200 peer-reviewed articles.His current research interests include mode-locking laser oscillators and amplifiers, fiber lasers, linear and nonlinear propagation in photonic crystal fibers, and microstructure optical devices. https://www.researchgate.net/profile/Hu_Minglie
- Doctoral degree| Tianjin University| Optical Engineering| 2005
- Bachelor’s Degree| Tianjin University| Opto electronics| 2000
- femtosecond laser
- fiber laser
- Microstructre fiber and devices
-
2010.6-2019.12
 Tianjin University | professor  -
2007.3-2010.6
 Tianjin University | associate professor  -
2005.3-2007.3
 Tianjin University | Post PhD 
- Papers
- [1] J. T. Fan,W.Chen, C. L. Gu, Y.J. Song, L.Chai, C. Y. Wang, and M. L. Hu*,Noise characteristics of high power fiber-laser pumped femtosecond optical parametric generation, Optics Express 24, (2017).
- [2] W. Liu, J. T. Fan, C. Xie, Y. J. Song, C. L. Gu, L. Chai, C. Y. Wang, and M. L. Hu*, "Programmable controlled mode-locked fiber laser using a digital micromirror device," Optics Letters 42, 1923-1926 (2017).
-
- [3] J. T. Fan, C. L. Gu, C. Y. Wang, and M. L. Hu*, "Extended femtosecond laser wavelength range to 330 nm in a high power LBO based optical parametric oscillator," Optics Express 24, 13250-13257 (2016).
- [4] S. He, S. Amoruso, D. Pang, C. Wang, and M. L. Hu*, "Chromatic annuli formation and sample oxidation on copper thin films by femtosecond laser," Journal of Chemical Physics 144 (2016).
- [5] L. L. Huang, M. L. Hu*, X. H. Fang, B. W. Liu, L. Chai, and C. Y. Wang, "Generation of 110-W sub-100-fs Pulses at 100 MHz by Nonlinear Amplification Based on Multicore Photonic Crystal Fiber," Ieee Photonics Journal 8, 7 (2016).
- [6] C. Gu, M. L. Hu*, J. Fan, Y. Song, B. Liu, L. Chai, C. Wang, and D. T. Reid, "High power tunable femtosecond ultraviolet laser source based on an Yb-fiber-laser pumped optical parametric oscillator," Optics Express 23, 6181-6186 (2015).
- [7] C. Gu, M. L. Hu*, J. Fan, Y. Song, B. Liu, and C. Wang, "High-power, dual-wavelength femtosecond LiB3O5 optical parametric oscillator pumped by fiber laser," Optics Letters 39, 3896-3899 (2014).
- [8] X.-h. Fang, M. L. Hu*, L.-l. Huang, L. Chai, N.-l. Dai, J.-y. Li, A. Y. Tashchilina, A. M. Zheltikov, and C.-y. Wang, "Multiwatt octave-spanning supercontinuum generation in multicore photonic-crystal fiber," Optics Letters 37, 2292-2294 (2012).
- [9] M. L. Hu, C. Y. Wang, Y. F. Li, L. Chai, and A. M. Zheltikov, "Tunable supercontinuum generation in a high-index-step photonic-crystal fiber with a comma-shaped core," Optics Express 14, 1942-1950 (2006).
- [10] M. L. Hu, C. Y. Wang, Y. J. Song, Y. F. Li, L. Chai, E. E. Serebryannikov, and A. M. Zheltikov, "A hollow beam from a holey fiber," Optics Express 14, 4128-4134 (2006).
- [11] M. L. Hu, C. Y. Wang, Y. J. Song, Y. F. Li, L. Chai, E. E. Serebryannikov, and A. M. Zheltikov, "Mode-selective mapping and control of vectorial nonlinear-optical processes in multimode photonic-crystal fibers," Optics Express 14, 1189-1198 (2006).
- [12] Y. F. Li, C. Y. Wang, and M. L. Hu, "A fully vectorial effective index method for photonic crystal fibers: application to dispersion calculation," Optics Communications 238, 29-33 (2004).
- [13] M. L. Hu, C. Y. Wang, Y. Li, Z. Wang, L. Chai, Y. N. Kondrat'ev, C. Sibilia, and A. M. Zheltikov, "An anti-Stokes-shifted doublet of guided modes in a photonic-crystal fiber selectively generated and controlled with orthogonal polarizations of the pump field," Applied Physics B-Lasers and Optics 79, 805-809 (2004).
- [14] M. L. Hu, C. Y. Wang, Y. F. Li, Z. Wang, L. Chai, and A. M. Zheltikov, "Multiplex frequency conversion of unamplified 30-fs Ti: sapphire laser pulses by an array of waveguiding wires in a random-hole microstructure fiber," Optics Express 12, 6129-6134 (2004).
- [15] M. L. Hu, C. Y. Wang, L. Chai, and A. M. Zheltikov, "Frequency-tunable anti-Stokes line emission by eigenmodes of a birefringent microstructure fiber," Optics Express 12, 1932-1937 (2004).
- [16] M. L. Hu, C. Y. Wang, L. Chai, Y. F. Li, K. V. Dukel'skii, A. V. Khokhlov, V. S. Shevandin, Y. N. Kondrat'ev, and A. M. Zheltikov, "Birefringence-controlled anti-Stokes line emission from a microstructure fiber," Laser Physics Letters 1, 299-302 (2004).
- [17] Y. F. Li, C. Y. Wang, M. L. Hu, B. W. Liu, X. W. Sun, and L. Chai, "Honeycomb photonic bandgap fibers with and without interstitial air holes," Optics Express 13, 6856-6863 (2005).
- [18] M. L. Hu, C. Y. Wang, Y. F. Li, Z. Wang, L. Chai, and A. M. Zheltikov, "Polarization- and mode-dependent anti-stokes emission in a birefringent microstructure fiber," Ieee Photonics Technology Letters 17, 630-632 (2005).
- [19] M. L. Hu, C. Y. Wang, Y. F. Li, L. Chai, and A. M. Zheltikov, "Polarization-demultiplexed two-color frequency conversion of femtosecond pulses in birefringent photonic-crystal fibers," Optics Express 13, 5947-5952 (2005).
- [20] Y. F. Li, C. Y. Wang, M. L. Hu, B. W. Liu, X. W. Sun, and L. Chai, "Photonic bandgap fibers based on a composite honeycomb lattice," Ieee Photonics Technology Letters 18, 262-264 (2006).
- [21] Y. Chen, Z. Song, Y. Li, M. Hu, Q. Xing, Z. Zhang, L. Chai, and C.-Y. Wang, "Effective surface plasmon polaritons on the metal wire with arrays of subwavelength grooves," Optics Express 14, 13021-13029 (2006).
- [22] Y.-F. Li, M. L. Hu, C.-Y. Wang, and A. M. Zheltikov, "Perturbative and phase-transition-type modification of mode field profiles and dispersion of photonic-crystal fibers by arrays of nanosize air-hole defects," Optics Express 14, 10878-10886 (2006).
- [23] M. L. Hu, C. Y. Wang, E. E. Serebryannikov, Y. J. Song, Y. F. Li, L. Chai, K. V. Dukel'skii, A. V. Khokhlov, V. S. Shevandin, Y. N. Kondrat'ev, and A. M. Zheltikov, "Wavelength-tunable hollow-beam generation by a photonic-crystal fiber," Laser Physics Letters 3, 306-309 (2006).
- [24] M. L. Hu, Y.-F. Li, L. Chai, Q. Xing, L. V. Doronina, A. A. Ivanov, C.-Y. Wang, and A. M. Zheltikov, "Two-dimensional coherent superposition of blue-shifted signals from an array of highly nonlinear waveguiding wires in a photonic-crystal fiber," Optics Express 16, 11176-11181 (2008).
- [25] Y.-J. Song, M. L. Hu, C.-L. Wang, Z. Tian, Q.-R. Xing, L. Chai, and C.-Y. Wang, "Environmentally stable, high pulse energy Yb-doped large-mode-area photonic crystal fiber laser operating in the soliton-like regime," Ieee Photonics Technology Letters 20, 1088-1090 (2008).
- [26] B.-W. Liu, M. L. Hu*, X.-H. Fang, Y.-F. Li, L. Chai, C.-Y. Wang, W. Tong, J. Luo, A. A. Voronin, and A. M. Zheltikov, "Stabilized soliton self-frequency shift and 0.1-PHz sideband generation in a photonic-crystal fiber with an air-hole-modified core," Optics Express 16, 14987-14996 (2008).
- [27] B.-W. Liu, M. L. Hu*, X.-H. Fang, Y.-F. Li, L. Chai, J.-Y. Li, W. Chen, and C.-Y. Wang, "Tunable bandpass filter with solid-core photonic bandgap fiber and Bragg fiber," Ieee Photonics Technology Letters 20, 581-583 (2008).
- [28] Y. Li, Y. Yao, M. L. Hu, L. Chai, and C. Wang, "Improved fully vectorial effective index method for photonic crystal fibers: evaluation and enhancement," Applied Optics 47, 399-406 (2008).
- [29] C. Ouyang, L. Chai, H. Zhao, M. L. Hu, Y. Song, and C. Wang, "Position Effect of Spectral Filter on Properties of Highly Chirped Pulses in an All-Normal-Dispersion Fiber Laser," Ieee Journal of Quantum Electronics 45, 1284-1288 (2009).
- [30] B. W. Liu, M. L. Hu*, X. H. Fang, Y. Z. Wu, Y. J. Song, L. Chai, C. Y. Wang, and A. M. Zheltikov, "High-power wavelength-tunable photonic-crystal-fiber-based oscillator-amplifier-frequency- shifter femtosecond laser system and its applications for material microprocessing," Laser Physics Letters 6, 44-48 (2009).
- [31] C. Ouyang, L. Chai, H. Zhao, M. L. Hu, Y. Song, Y. Li, and C. Wang, "Pulse-shaping dynamics controlled by four structural parameters in an all-normal-dispersion mode-locked fiber laser," Journal of the Optical Society of America B-Optical Physics 26, 1875-1881 (2009).
- [32] Z.-X. Zhang, M. L. Hu*, K. T. Chan, and C.-Y. Wang, "Plasmonic waveguiding in a hexagonally ordered metal wire array," Optics Letters 35, 3901-3903 (2010).
- [33] Y.-y. Zhang, C. Zhang, M. L. Hu*, Y.-j. Song, S.-j. Wang, L. Chai, and C.-y. Wang, "High-Energy Subpicosecond Pulse Generation From a Mode-Locked Yb-Doped Large-Mode-Area Photonic Crystal Fiber Laser With Fiber Facet Output," Ieee Photonics Technology Letters 22, 350-352 (2010).
- [34] H. Liu, M. L. Hu*, B. Liu, Y. Song, L. Chai, A. M. Zheltikov, and C. Wang, "Compact high-power multiwavelength photonic-crystal-fiber-based laser source of femtosecond pulses in the infrared-visible-ultraviolet range," Journal of the Optical Society of America B-Optical Physics 27, 2284-2289 (2010).
- [35] F. Liu, Y.-J. Song, Q.-R. Xing, M. L. Hu*, Y.-F. Li, C.-L. Wang, L. Chai, W.-L. Zhang, A. M. Zheltikov, and C.-Y. Wang, "Broadband Terahertz Pulses Generated by a Compact Femtosecond Photonic Crystal Fiber Amplifier," Ieee Photonics Technology Letters 22, 814-816 (2010).
- [36] B.-W. Liu, M. L. Hu*, S.-J. Wang, L. Chai, C. Wang, N.-l. Dai, J.-Y. Li, and A. M. Zheltikov, "All-photonic-crystal-fiber coherent black-light source," Optics Letters 35, 3958-3960 (2010).
- [37] Y. J. Song, M. L. Hu, C. L. Gu, L. Chai, C. Y. Wang, and A. M. Zheltikov, "Mode-locked Yb-doped large-mode-area photonic crystal fiber laser operating in the vicinity of zero cavity dispersion," Laser Physics Letters 7, 230-235 (2010).
- [38] W. Ge, L. Chai, J. Yan, M. L. Hu, C. Wang, L. Su, H. Li, L. Zheng, and J. Xu, "High Power Continuous-Wave Operation and Dynamics of Soliton Mode-Locked Yb,Na:CaF2 Lasers at Room Temperature," Ieee Journal of Quantum Electronics 47, 977-983 (2011).
- [39] C. Wang, J. Gu, J. Han, Q. Xing, T. Zhen, F. Liu, L. Chai, Y. Li, M. L. Hu, Q. Wang, X. Lu, and W. Zhang, "Role of mode coupling on transmission properties of subwavelength composite hole-patch structures," Applied Physics Letters 96 (2010).
- [40] X.-H. Fang, M. L. Hu*, B.-W. Liu, L. Chai, C.-Y. Wang, and A. M. Zheltikov, "Generation of 150 MW, 110 fs pulses by phase-locked amplification in multicore photonic crystal fiber," Optics Letters 35, 2326-2328 (2010).
- [41] X.-H. Fang, M. L. Hu*, Y.-F. Li, L. Chai, C.-Y. Wang, and A. M. Zheltikov, "Hybrid multicore photonic-crystal fiber for in-phase supermode selection," Optics Letters 35, 493-495 (2010).
- [42] M. L. Hu, X.-H. Fang, B.-W. Liu, L. Chai, Y.-F. Li, A. M. Zheltikov, and C.-Y. Wang, "Multicore photonic-crystal-fiber platform for high-power all-fiber ultrashort-pulse sources," Journal of Modern Optics 58, 1966-1970 (2011).
- [43] Y. Li, F. Liu, Y. Li, L. Chai, Q. Xing, M. L. Hu*, and C. Wang, "Experimental study on GaP surface damage threshold induced by a high repetition rate femtosecond laser," Applied Optics 50, 1958-1962 (2011).
- [44] X.-H. Fang, M. L. Hu*, Y.-F. Li, L. Chai, and C.-Y. Wang, "Spatially Flat In-Phase Supermode in Multicore Hybrid Photonic Crystal Fiber," Journal of Lightwave Technology 29, 3428-3432 (2011).
- [45] X. Fang, M. L. Hu*, C. Xie, Y. Song, L. Chai, and C. Wang, "High pulse energy mode-locked multicore photonic crystal fiber laser," Optics Letters 36, 1005-1007 (2011).
- [46] C. Xie, B. Liu, H. Niu, Y. Song, Y. Li, M. L. Hu, Y. Zhang, W. Shen, X. Liu, and C. Wang, "Vector-dispersion compensation and pulse pedestal cancellation in a femtosecond nonlinear amplification fiber laser system," Optics Letters 36, 4149-4151 (2011).
- [47] Q. Ma, Y. g. Zhang, C. Xie, W. d. Shen, M. L. Hu, S. n. Zhang, Y. j. Song, Y. h. Li, Q. y. Wang, and X. Liu, "Design and fabrication of Gires-Tournois interferometers for Yb-doped photonic crystal fiber laser system," Applied Physics B-Lasers and Optics 105, 277-284 (2011).
- [48] Y. Li, X. Hu, F. Liu, J. Li, Q. Xing, M. L. Hu, C. Lu, and C. Wang, "Terahertz waveguide emitters in photonic crystal fiber form," Journal of the Optical Society of America B-Optical Physics 29, 3114-3118 (2012).
- [49] H. L. Niu, W. D. Shen, C. S. Li, Y. G. Zhang, C. Xie, P. Yu, W. J. Yuan, B. W. Liu, M. L. Hu, Q. Y. Wang, and X. Liu, "Dispersive mirrors for high third-order dispersion compensation in femtosecond amplification fiber laser system," Applied Physics B-Lasers and Optics 108, 609-614 (2012).
- [50] J. Qian, D. Wang, F.-H. Cai, W. Xi, L. Peng, Z.-F. Zhu, H. He, M. L. Hu, and S. He, "Observation of Multiphoton-Induced Fluorescence from Graphene Oxide Nanoparticles and Applications in In Vivo Functional Bioimaging," Angewandte Chemie-International Edition 51, 10570-10575 (2012).
- [51] C. Xie, M. L. Hu, Z. Xu, W. Wu, H. Gao, P. Qin, D. Zhang, B. Liu, and C.-Y. Wang, "High power femtosecond Bessel-X pulses directly from a compact fiber laser system," Applied Physics Letters 101 (2012).
- [52] C. Zhang, Y.-y. Zhang, M. L. Hu*, S.-j. Wang, Y.-j. Song, L. Chai, and C.-y. Wang, "Wavelength tunable, high energy femtosecond laser pulses directly generated from large-mode-area photonic crystal fiber," Optics Communications 285, 2715-2718 (2012).
- [53] C. Xie, M. L. Hu, D.-P. Zhang, C.-L. Gu, Y.-J. Song, L. Chai, and C.-Y. Wang, "Generation of 25-fs High Energy Pulses by SPM-Induced Spectral Broadening in a Photonic Crystal Fiber Laser System," Ieee Photonics Technology Letters 24, 551-553 (2012).
- [54] H. He, S. Wang, X. Li, S. Li, M. L. Hu, Y. Cao, and C.-Y. Wang, "Ca2+ waves across gaps in non-excitable cells induced by femtosecond laser exposure," Applied Physics Letters 100 (2012).
- [55] H. He, S. Li, S. Wang, M. L. Hu, Y. Cao, and C. Wang, "Manipulation of cellular light from green fluorescent protein by a femtosecond laser," Nature Photonics 6, 651-656 (2012).
- [56] L. V. Doronina-Amitonova, I. y. V. Fedotov, A. B. Fedotov, K. V. Anokhin, M. L. Hu, C.-y. Wang, and A. M. Zheltikov, "Raman detection of cell proliferation probes with antiresonance-guiding hollow fibers," Optics Letters 37, 4642-4644 (2012).
- [57] H. He, X. Zhang, X. Yan, L. Huang, C. Gu, M. L. Hu, X. Zhang, X. M. Ren, and C. Wang, "Broadband second harmonic generation in GaAs nanowires by femtosecond laser sources," Applied Physics Letters 103 (2013).
- [58] X.-H. Fang, M. L. Hu*,, B.-W. Liu, L. Chai, C.-Y. Wang, H.-F. Wei, W.-J. Tong, J. Luo, C.-K. Sun, A. A. Voronin, and A. M. Zheltikov, "An all-photonic-crystal-fiber wavelength-tunable source of high-energy sub-100 fs pulses," Optics Communications 289, 123-126 (2013).
- [59] C. Gu, M. L. Hu*, L. Zhang, J. Fan, Y. Song, C. Wang, and D. T. Reid, "High average power, widely tunable femtosecond laser source from red to mid-infrared based on an Yb-fiber-laser-pumped optical parametric oscillator," Optics Letters 38, 1820-1822 (2013).
- [60] X. Xie, L. Huang, Y. Li, and M. L. Hu, "Modeling multifilament core fibers by effective index method," Optics Communications 298, 114-119 (2013).
- [61] X. Zhang, H. He, J. Fan, C. Gu, X. Yan, M. L. Hu, X. Zhang, X. Ren, and C. Wang, "Sum frequency generation in pure zinc-blende GaAs nanowires," Optics Express 21, 28432-28437 (2013).
- [62] S. Wang, B. Liu, C. Gu, Y. Song, C. Qian, M. L. Hu, L. Chai, and C. Wang, "Self-similar evolution in a short fiber amplifier through nonlinear pulse preshaping," Optics Letters 38, 296-298 (2013).
- [63] Y. Lan, Y. Song, M. L. Hu, B. Liu, L. Chai, and C. Wang, "Enhanced spectral breathing for sub-25 fs pulse generation in a Yb-fiber laser," Optics Letters 38, 1292-1294 (2013).
- [64] S. Wang, B. Liu, M. L. Hu, and C. Wang, "Amplification and Bandwidth Recovery of Chirped Super-Gaussian Pulses by Use of Gain Shaping in Ytterbium-Doped Fiber Amplifiers," Journal of Lightwave Technology 32, 3827-3835 (2014).
- [65] J. Li, L. Chai, J. Shi, B. Liu, B. Xu, M. L. Hu, Y. Li, Q. Xing, C. Wang, A. B. Fedotov, and A. M. Zheltikov, "Efficient terahertz wave generation from GaP crystals pumped by chirp-controlled pulses from femtosecond photonic crystal fiber amplifier," Applied Physics Letters 104 (2014).
- [66] P. Qin, Y. Song, H. Kim, J. Shin, D. Kwon, M. L. Hu, C. Wang, and J. Kim, "Reduction of timing jitter and intensity noise in normal-dispersion passively mode-locked fiber lasers by narrow band-pass filtering," Optics Express 22, 28276-28283 (2014).
- [67] Y. Wang, B. Lan, H. He, M. L. Hu, Y. Cao, and C. Wang, "Laser stimulation can activate autophagy in HeLa cells," Applied Physics Letters 105 (2014).
- [68] Y. Wang, H. He, S. Li, D. Liu, B. Lan, M. L. Hu, Y. Cao, and C. Wang, "All-optical regulation of gene expression in targeted cells," Scientific Reports 4 (2014).
- [69] W. Yan, H. He, Y. Wang, Y. Wang, M. L. Hu, and C. Wang, "Controllable generation of reactive oxygen species by femtosecond-laser irradiation," Applied Physics Letters 104 (2014).
- [70] L.-L. Huang, M. L. Hu*, X.-H. Fang, Y.-F. Li, L. Chai, H.-F. Wei, W.-J. Tong, J. Luo, and C.-Y. Wang, "Intermodal Cherenkov Radiation Between Two Transmission Bandgaps in an All-Solid PBG Fiber," Ieee Photonics Technology Letters 26, 1968-1971 (2014).
- [71] J. Fan, Y. Li, X. Zhang, M. L. Hu, L. Chai, and C. Wang, "Predicting Mode Properties of Porous-Core Honeycomb Bandgap THz Fibers by Semi-Analytical Theory," Journal of Lightwave Technology 33, 1931-1936 (2015).
- [72] S. He, J. J. J. Nivas, K. K. Anoop, A. Vecchione, M. L. Hu, R. Bruzzese, and S. Amoruso, "Surface structures induced by ultrashort laser pulses: Formation mechanisms of ripples and grooves," Applied Surface Science 353, 1214-1222 (2015).
- [73] L. Jin, F. Jiang, N. Dai, J. Peng, M. L. Hu, S. He, K. Fang, and X. Yang, "Sclerectomy with nanojoule energy level per pulse by femtosecond fiber laser in vitro," Optics Express 23, 22012-22023 (2015).
- [74] W. Jia, Y. Luo, J. Yu, B. Liu, M. L. Hu, L. Chai, and C. Wang, "Effects of high-repetition-rate femtosecond laser micromachining on the physical and chemical properties of polylactide (PLA)," Optics Express 23, 26932-26939 (2015).
- [75] J. Shi, L. Chai, X. Zhao, B. Liu, M. L. Hu, Y. Li, and C. Wang, "95 nJ dispersion-mapped amplifier similariton fiber laser at 8.6 MHz repetition rate with linear cavity configuration," Optics Express 23, 18330-18337 (2015).
- [76] H. Shi, Y. Song, F. Liang, L. Xu, M. L. Hu, and C. Wang, "Effect of timing jitter on time-of-flight distance measurements using dual femtosecond lasers," Optics Express 23, 14057-14069 (2015).
- [77] F. Shi, H. He, Y. Wang, D. Liu, M. L. Hu, and C. Wang, "Mitochondrial swelling and restorable fragmentation stimulated by femtosecond laser," Biomedical Optics Express 6, 4539-4545 (2015).
- [78] S. Zhang, W. You, X. Ma, M. L. Hu, and Q. Wang, "Spectral Characteristics of Femtosecond Pulses Propagation in Periodically Poled Lithium Niobate via Cascaded Quadratic Non linearity," Ieee Journal of Quantum Electronics 51 (2015).
- [79] S. Wang, W. Chen, P. Qin, Y. Song, M. L. Hu, and B. Liu, "Spectral and temporal breathing self-similar evolution in a fiber amplifier for low-noise transform-limited pulse generation," Optics Letters 41, 5286-5289 (2016).
- [80] S. He, J. J. J. Nivas, A. Vecchione, M. L. Hu, and S. Amoruso, "On the generation of grooves on crystalline silicon irradiated by femtosecond laser pulses," Optics Express 24, 3238-3247 (2016).
- [81] F. Wang, Z. X. Jia, C. F. Yao, S. B. Wang, M. L. Hu, C. F. Wu, Y. Ohishi, W. P. Qin, and G. S. Qin, "Supercontinuum generation from 437 to 2850 nm in a tapered fluorotellurite microstructured fiber," Laser Physics Letters 13 (2016).
- [82] S. Zhang, K. Zhai, X. Ma, M. L. Hu, and Q. Wang, "Broadband and Efficient Femtosecond Second-Harmonic Generation With Temperature-Dependent Group Velocity Matching," Ieee Journal of Quantum Electronics 52 (2016).
- [83] K. Zhai, S. Zhang, X. Ma, Y. Song, M. L. Hu Q. Wang, and K. Zhang, "Temperature Dependence of Fiber-Format Multiwavelength Generation Process in Bulk MgO-PPLN Crystal Via High-Power Photonic Crystal Fiber Laser," Ieee Photonics Journal 8 (2016).
- [84] C. Yao, Z. Zhao, Z. Jia, Q. Li, M. L. Hu, G. Qin, Y. Ohishi, and W. Qin, "Mid-infrared dispersive waves generation in a birefringent fluorotellurite microstructured fiber," Applied Physics Letters 109, 17-21 (2016).
- [85] H. Kan, S. Zhang, K. Zhai, X. Ma, Y. Luo, M. L. Hu, and Q. Wang, "Femtosecond-induced micostructures in Magnesium- doped Lithium Niobate crystals with high repetition rate," Optics Communications 361, 175-180 (2016).
- [86] R. Liao, Y. Song, X. Zhou, L. Chai, C. Wang, and M. L. Hu*, "Ultra-flat supercontinuum generated from high-power, picosecond telecommunication fiber laser source," Applied optics 55, 9384-9388 (2016).
- [87] H. Tian, Y. Song, F. Meng, Z. Fang, M. L. Hu*, and C. Wang, "Long-term stable coherent beam combination of independent femtosecond Yb-fiber lasers," Optics Letters 41, 5142-5145 (2016).
- [88] S. Wang, B. Liu, M. L. Hu*, and C. Wang, "On the Efficiency of Parabolic Self-Similar Pulse Evolution in Fiber Amplifiers with Gain Shaping," Journal of Lightwave Technology 34, 3023-3034 (2016).
- [89] J. T. Fan, Y. F. Li, M. L. Hu, L. Chai, and C. Y. Wang, "Design of Broadband Porous-Core Bandgap Terahertz Fibers," Ieee Photonics Technology Letters 28, 1096-1099 (2016).
- [90] W. Chen, Y. Song, K. Jung, M. L. Hu, C. Wang, and J. Kim, "Few-femtosecond timing jitter from a picosecond all-polarization-maintaining Yb-fiber laser," Optics Express 24, 1347-1357 (2016).
- [91] S. G. Zhang, K. L. Zhai, W. C. You, X. R. Ma, M. L. Hu, and Q. Y. Wang, "Temperature tunable cascaded energy transfer during femtosecond nonlinear frequency conversion process," Materials Letters 197, 56-58 (2017).
- [92] S. G. Zhang, H. L. Kan, K. L. Zhai, X. R. Ma, Y. M. Luo, M. L. Hu, and Q. Y. Wang, "Periodic disruptions induced by high repetition rate femtosecond pulses on magnesium-oxide-doped lithium niobate surfaces," Laser Physics 27 (2017).
- [93] S. S. Xu, Y. F. Li, X. J. Liang, H. Cao, M. L. Hu, L. Chai, and C. Y. Wang, "Generation of Terahertz Radiation by Optical Rectification Using Femtosecond Bessel Beam," Ieee Journal of Selected Topics in Quantum Electronics 23 (2017).
- [94] Y. T. Wang, H. He, S. Y. Wang, Y. H. Liu, M. L. Hu, Y. J. Cao, S. K. Kong, X. B. Wei, and C. Y. Wang, "Photostimulation by femtosecond laser triggers restorable fragmentation in single mitochondrion," Journal of Biophotonics 10, 286-293 (2017).
- [95] H. Y. Song, B. W. Liu, Y. Li, Y. J. Song, H. He, L. Chai, M. L. Hu, and C. Y. Wang, "Practical 24-fs, 1-mu J, 1-MHz Yb-fiber laser amplification system," Optics Express 25, 7559-7566 (2017).
- [96] H. S. Shi, Y. J. Song, J. H. Yu, R. M. Li, M. L. Hu, and C. Y. Wang, "Quantum-limited timing jitter characterization of mode-locked lasers by asynchronous optical sampling," Optics Express 25, 10-19 (2017).
- [97] Y. Li, H. He, H. Y. Song, B. W. Liu, M. L. Hu, and C. Y. Wang, "Investigation of photodamage by femtosecond laser to cells via gold nanorods," Journal of Innovative Optical Health Sciences 10 (2017).
- [98] N. Li, F. Wang, C. F. Yao, Z. X. Jia, L. Zhang, Y. Feng, M. L. Hu, G. S. Qin, Y. Ohishi, and W. P. Qin, "Coherent supercontinuum generation from 1.4 to 4 mu m in a tapered fluorotellurite microstructured fiber pumped by a 1980 nm femtosecond fiber laser," Applied Physics Letters 110 (2017).
- [99] H. Y. Song, B. W. Liu, L. Wen, C. Y. Wang, and M. L. Hu*, "Optimization of Nonlinear Compensation in a High-Energy Femtosecond Fiber CPA System by Negative TOD Fiber," Ieee Photonics Journal 9 (2017).
- [100] F. C. Meng, B. W. Liu, Y. F. Li, C. Y. Wang, and M. L. Hu*, "Low Loss Hollow-Core Antiresonant Fiber With Nested Elliptical Cladding Elements," Ieee Photonics Journal 9 (2017).
- Honors & Awards
- [1] 2013 Tianjin Youth Science and Technology Award
- [2] 2011 Jin-Guofan Awards for Young Scientists
-
- [3] 2009 The first-class technical invention award, Ministry of Education (MoE), China (Photonic Crystal Fiber Femtosecond Laser Technology)
- [4] 2008 Top 10 Achievements in Scientific and Technological Development of Chinese University (Photonic Crystal Fiber Femtosecond Laser Technology)
- [5] 2007 New Century Excellent Talents in University
- [6] 2007 National Excellent Doctoral Dissertation