College of Intelligence and Computing
Professor
Professor
Computer Science and Technology
lik@tju.edu.cn
Kun Li received the B.E. degree from Beijing University of Posts and Telecommunications, Beijing, China, in 2006, and the master and Ph.D. degrees from Tsinghua University, Beijing, in 2011. She visited E´cole Polytechnique Fe´de´rale de Lausanne (EPFL), Lausanne, Switzerland, in 2012 and from 2014 to 2015. She is currently an Associate Professor with the College of Intelligence and Computing, Tianjin University, Tianjin, China. Her research interests include dynamic scene 3D reconstruction and image/video processing. She got the Platinum Best Paper award in IEEE ICME 2017, and Excellent Young Scientists Fund of National Natural Science Foundation of China in 2021, respectively. Please find more information on http://cic.tju.edu.cn/faculty/likun/index.html.
- Ph.D.| Tsinghua University| Control Science and Engineering| 2011
- B.E.| Beijing University of Posts and Telecommunications| Communication engineering| 2006
- Image/video processing
- Artificial Intelligence
- Computer graphics
- Computer vison
-
2014.10-2015.10
 EPFL | Postdoctoral  -
2011.7-2014.6
 Tianjin university | Assistant professor 
- Papers
- [1] Kun Li, Jingyu Yang, Leijie Liu, Ronan Boulic, Yukun Lai, Yebin Liu, Yubin Li, and Eray Molla, “SPA: Sparse Photorealistic Animation Using a Single RGB-D Camera”, IEEE Transactions on Circuits and System for Video Technology (Special Issue on Augmented Video), vol 27, no. 4, pp. 771-783, 2017.
- [2] Kun Li, Yanming Zhu, Jianmin Jiang and Jingyu Yang, “Video Super-resolution Using an Adaptived Superpixel-guided Auto-Regeressive Model”, Pattern Recognition, vol. 51, no. 3, pp. 59-71, 2016.
-
- [3] Kun Li, Jingyu Yang and Jianmin Jiang, “Nonrigid structure from motion via sparse representation”, IEEE Trans. Cybernetics, vol. 45, no. 8, pp. 1401-1413, 2015.
- [4] Jingyu Yang, Ke Li, Kun Li, Yukun Lai, “Sparse Non-rigid Registration of 3D Shapes”, Computer Graphics Forum, vol. 34, no. 5, pp. 89-99, 2015.
- [5] Jingyu Yang, Ziqiao Gan, Kun Li, Chunping Hou, “Graph-based Segmentation for RGB-D Data Using 3-D Geometry Enhanced Superpixels”, IEEE Trans. Cybernetics, vol. 45, no. 5, pp. 913-926, 2015.
- [6] Xinchen Ye, Jingyu Yang, Xin Sun, and Kun Li. Foreground-Background Separation From Video Clips via Motion-Assisted Matrix Restoration. IEEE Trans. Circuits and Systems for Video Technology, vol. 25, no. 11, pp. 1721-1734, 2015.
- [7] Jingyu Yang, Xinchen Ye, Kun Li, Chunping Hou, Yao Wang, “Color-guided Depth Recovery from RGB-D Data Using an Adaptive Auto-regressive Model”, IEEE Trans. Image Processing, vol. 23, no. 8, pp. 3443-3458, 2014.
- [8] Yanming Zhu, Kun Li, and Jianmin Jiang, “Video Super-Resolution Based on Automatic Key-Frame Selection and Feature-Guided Variational Optical Flow”, Signal Processing: Image Communication, 29(8), 875-886, 2014.
- [9] Kun Li, Qionghai Dai, Wenli Xu, et al., “Temporal-dense dynamic 3D reconstruction with low frame rate cameras”, IEEE Journal of Selected Topics in Signal Processing, vol. 6, no. 5, pp. 447-459, 2012.
- [10] Kun Li, Qionghai Dai, Wenli Xu, Jingyu Yang and Jianmin Jiang, “Three-Dimensional motion estimation via matrix completion”, IEEE Trans. Systems, Man, and Cybernetics, Part B: Cybernetics, vol. 42, no. 2, pp. 539-551, 2012.
- [11] Kun Li, Qionghai Dai and Wenli Xu, “Markless shape and motion capture from video sequences”, IEEE Trans. Circuits and System for Video Technology, vol. 21, no. 3, pp. 320-334, 2011.
- [12] Kun Li, Qionghai Dai and Wenli Xu, “Collaborative color calibration for multi-camera systems”, Signal Processing: Image Communication, vol. 26, no. 1, pp. 48-60, 2011.
- Patents
- [1] 基于小波变换的单相机视频三维重建方法
- [2] 时空联合多视角视频插值及三维建模方法
-
- [3] 基于特征导向变分光流的视频超分辨率方法
- [4] 采用环形低帧摄像机阵列对高速运动物体建模的方法
- [5] 一种环形摄像机阵列校准系统及其方法
- [6] 一种对多台摄像机进行全局颜色校准的方法
- [7] 三维模型的捕捉及重建方法和系统
- [8] 基于自适应的超像素导向自回归模型的视频超分辨率方法
- [9] 基于运动信息和矩阵填充的视频背景恢复方法
- [10] 基于飞行时间TOF相机的深度计算成像方法
- [11] 基于散斑结构光深度相机的多视点计算成像方法
- [12] 采用自回归模型对深度图进行超分辨率重建的方法
- [13] 基于感兴趣深度的立体图像压缩方法
- [14] 基于稀疏表示理论的超分辨率图像获取方法
- [15] 基于稀疏表示的非刚性表面对齐方法
- [16] 基于加权双稀疏约束的非刚性表面配准方法
- [17] 可变形物体的全局非刚性配准与重建
- [18] 基于图论的低秩矩阵恢复三维骨架方法
- [19] 基于体感相机Kinect v2.0的真实感动画生成方法
- [20] 基于Kinect深度相机的人体分割方法
- [21] 一种雾霾环境下的深度计算方法
- [22] 基于图像的雾霾PM2.5值估计方法
- [23] 基于L1范数约束的RGB-D图像本征分解方法
- [24] 基于低秩矩阵分析的三维骨架修复方法
- [25] 基于低秩矩阵重建和稀疏表示的行列缺失图像填充方法