![]()
刘若楠
- 教师拼音名称:Liu Ruonan
- 职称:副教授
- 所属院系:智能与计算学部
- 6abde08f81ef7437de831b578cd57a9f4715827d04bdba3ebacaa82848d136095032da23af3ece5e5af40425a8e18f9e8bec56afbf1eb2619c2cc2a1b1dec0253173e2031eb590dafcb1a98b7a3b47482d867ab459d1e2f7178bd9487087dce9c2d7ad8f8b94733f53b09acee19f6cd523b0862007f5973bcd502843c83cbe17
- 73849c4d47326a926db45c9584e765248409d828f5b2ed21bb1320767fc2b1bbf4a71be9dd3dda119e0b4189a03cd66d1ad2d5a2400c9b15f6ae93783737d1c4406185fd0456819503b1e15feea4ca7f9a409ac503b32edbe58b686364fc20c547933d73dbe139b4e9fbac156bef6d2ff0f5c347465ce26fd9fa6927a0e49105
- 7c65423130c24a3278024d0f9da495b00932e05cad1b6cc443068735db47fef14fefc87e2951816e333086cbe32a1be0700e13865e7f1289875f6b4c8a42aecbe17c6fe66b6bcf6041aa67bc35f6364c2790f0fdd583b9a23078ea95c96723af44d160d3972a5b9809c83b1b3d1b3c3ab10fd68961c18bb071b5e61038af49a3
- 3fdf482d948cc0b3bee89822c463fb406dc2e022401adce4b434a093e84bf67d6d836e8824ce8b6604f25a7675e88c9ed8119e3710194b58a228be0f5549c660f3ffe5212934276343f61e04223a2db93f3818a2802e65620bf8b07dd9f70db6de8a081d6cde7a5043923f143764df156dafdcf68040f6ac6d42502b6dc61fbc
-
· Yang B, Liu R, Chen X. Sparse time-frequency representation for incipient fault diagnosis of wind turbine drive train[J]. IEEE Transactions on Instrumentation and Measurement, 2018, 67(11): 2616-2627.
-
· Yang B, Liu R, Chen X. Fault diagnosis for a wind turbine generator bearing via sparse representation and shift-invariant K-SVD[J]. IEEE Transactions on Industrial Informatics, 2017, 13(3): 1321-1331.
-
· Liu R, Yang B, Ma M, et al. Sparse components separation-based operational reliability assessment approach[C]//2016 Prognostics and System Health Management Conference (PHM-Chengdu). IEEE, 2016: 1-5.
-
· Liu R, Yang B, Zhang X, et al. Time-frequency atoms-driven support vector machine method for bearings incipient fault diagnosis[J]. Mechanical Systems and Signal Processing, 2016, 75: 345-370.
-
· Liu R, Meng G, Yang B, et al. Dislocated time series convolutional neural architecture: An intelligent fault diagnosis approach for electric machine[J]. IEEE Transactions on Industrial Informatics, 2016, 13(3): 1310-1320.
-
· Liu R, Yang B, Zio E, et al. Artificial intelligence for fault diagnosis of rotating machinery: A review[J]. Mechanical Systems and Signal Processing, 2018, 108: 33-47.
-
· Liu R, Yang B, Hauptmann A G. Simultaneous Bearing Fault Recognition and Remaining Useful Life Prediction Using Joint-Loss Convolutional Neural Network[J]. IEEE Transactions on Industrial Informatics, 2019, 16(1): 87-96.
-
· Yang B, Liu R*, Zio E. Remaining useful life prediction based on a double-convolutional neural network architecture[J]. IEEE Transactions on Industrial Electronics, 2019, 66(12): 9521-9530.
-
· Liu R, Wang F, Yang B, et al. Multi-scale Kernel based Residual Convolutional Neural Network for Motor Fault Diagnosis Under Non-stationary Conditions[J]. IEEE Transactions on Industrial Informatics, 2019.