School of Precision Instrument and Optoelectronics Engineering
Professor
柔性电子
huangxian@tju.edu.cn
School of Precision Instruments and Opto-electronic Engineering Office: 92 Weijin Road, Builidng 17, Room 405
Dr. Xian Huang
Professor, Biomedical Engineering
School of Precision Instruments and Opto-electronic Engineering
Office: 92 Weijin Road, Builidng 17, Room 405
Lab: 92 Weijin Road, Building 17, Room 421 and 611
Email: huangxian@tju.edu.cn
Education
2007/8-2011/10 Columbia University, Mechanical Engineering, Phd
2004/9-2007/3 Tianjin University, Measuring & Testing Technologies and Instruments, MS
2000/9-2004/6 Tianjin University, Measurement & Control Technology and Instrument, BS
Employment
1/2016-Now: Professor, Biomedical Engineering, Tianjin University, Tianjin, China
8/2014-12/2015: Assistant Professor, Mechanical and Aerospace Engineering, Missouri University of Science and Technology, Rolla, MO, USA
8/2011-7/2014: Postdoctoral Research Associate, Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
Research Interests
Bioinspired and biointegrated devices and materials for healthcare.
Flexible and stretchable epidermal sensors.
Transient electronics.
Implantable multichannel affinity sensing devices.
Biochips for body fluid analysis.
Honors and Scholarships
1000 Talented Youth Scholar Plan (China Central Government ,2015)
Peiyang Scholar (Tianjin University, 2015)
1000 Youth Scholar Plan (Tianjin City, 2014
Teaching and tutoring Experiences
Graduate advisor (One master student: Avinash Kankipati,two PhD students: Xiaowei Yu, and Bikram K. Mahajan ) (Missouri S&T, 2014-2016)
Instructor for “Modeling and Analysis of Dynamic System (ME 3411, fall 2014 30 students, Spring 2015 40 students) (Missouri S&T, 2014-Present)
Teaching assistant for “Intro to Mechanics of Fluids” (MECE E3100, 60 students) and “Mechanics of Fluids” (MECE E4100, 30 students) (Columbia University, 2007-2008).
Tutor for Harlem Children Society Program (Columbia University, 2009-2010).
Tutor for Senior Experience Internship (Bergen County Academies, 2009-2010).
- Phd| Columbia University| Mechanical Engineering| 2011
- MS| Tianjin University| Measuring & Testing Technologies and Instruments| 2007
- BS| Tianjin University| Measurement & Control Technology and Instrument| 2005
- Biochips for body fluid analysis.
- Implantable multichannel affinity sensing devices.
- Transient electronics.
- Bioinspired and biointegrated devices and materials for healthcare.
- Flexible and stretchable epidermal sensors.
-
2011.8-2014.7
Materials Science and Engineering | University of Illinois at Urbana-Champaign | Postdoctoral Research Associate  -
2014.8-2015.12
Mechanical and Aerospace Engineering | Missouri University of Science and Technology | Assistant Professor  -
2016.1-2019.12
Biomedical Engineering | Tianjin University | Professor 
- Papers
- [1] Structurally Colored Physically Unclonable Functions with Ultra-Rich and Stable Encoding Capacity, Advanced Functional Materials, 35(12):2417673, 2025.
- [2] Flexible Tactile Sensors with Self-Assembled Cilia Based on Magnetoelectric Composites, ACS Applied Materials & Interfaces, 17(4): 6936–6947,2025.
-
- [3] 生物可吸收导电油墨分散剂优化及其应用, 天津大学学报,57(8):867-876, 2024.
- [4] Pressure regulated printing of semiliquid metal on electrospinning film enables breathable and waterproof wearable electronics, Advanced Fiber Materials, 6(2):354-366, 2024.
- [5] Flexible tactile sensor based on machine learning inspired by bio mechanoreceptors, Biosensors&Bioelectronics, 267:116828, 2025.
- [6] Self-Healing and Shear-Stiffening Electrodes for Wearable Biopotential Sensing and Gesture Recognition, ACS sensors, 9(10):5253-5263, 2024.
- [7] Miniaturized Implantable Fluorescence Probes Integrated with Metal–Organic Frameworks for Deep Brain Dopamine Sensing, ACS Nano,18(15):10596-10608, 2024
- [8] Pressure Regulated Printing of Semiliquid Metal on Electrospinning Film Enables Breathable and Waterproof Wearable Electronics, Advanced Fiber Materials, 6:354–366, 2024.
- [9] Patterned Liquid-Metal-Enabled Universal Soft Electronics (PLUS-E) for Deformation Sensing on 3D Curved Surfaces, ACS Applied Materials & Interfaces, 15(44):51958-51970, 2023.
- [10] A flexible omnidirectional rotating magnetic array for MRI-safe transdermal wireless energy harvesting through flexible electronics, Science Advances, 9(33):adi5451, 2023.
- [11] Fully printed and Self-compensated Bioresorbable Electrochemical Devices Based on Galvanic Coupling for Continuous Glucose Monitoring, Science Advances, 9(29):adi3839, 2023.
- [12] Fully Integrated Microfluidic Device for Magnetic Bead Manipulation to Assist Rapid Reaction and Cleaning, Analytical Chemistry, 95(40):14934-14943, 2023.
- [13] Self-deploying origami magnetic membranes with flexible sensors for narrow liquid channels, Smart Materials and Structures, 32:095002, 2023.
- [14] Flexible Thermoelectric Devices with Flexible Heatsinks of Phase-Change Materials and Stretchable Interconnectors of Semi-Liquid Metals, ACS Applied Materials and Interfaces, 15(24):29330-29340, 2023.
- [15] In-situ formation of conductive epidermal electrodes using a fully integrated flexible system and injectable photocurable ink, ACS Nano, 17(11): 10689-10700, 2023.
- [16] A flexible wearable device coupled with injectable Fe3O4 nanoparticles for capturing circulating tumor cells and triggering their deaths, Biosensors and Bioelectronics, 235(1):115367, 2023.
- [17] Construction of a flexible optogenetic device for multisite and multiregional optical stimulation through flexible μ-LED displays on the cerebral cortex, Small, 19(39):202302241, 2023.
- [18] An All-in-one self-degradable flexible skin patch with thermostatic control and spontaneous release of antibacterial ions to accelerate wound healing, Advanced Materials Technologies, 8(14):2202159, 2023.
- [19] Stable and Dynamic Multiparameter Monitoring on Chests using Flexible Skin Patches with Self-adhesive Electrodes and a Synchronous Correlation Peak Extraction Algorithm, Advanced Healthcare Materials, 12(11):202202629, 2023.
- [20] A Self-Purifying Smart Mask Integrated with Metal–Organic Framework Membranes and Flexible Circuits, Advanced Materials interfaces, 10(4):202201895, 2022.
- [21] 柔性可穿戴传感与智能识别技术研究进展, SCIENTIA, 52(11):1913-1924, 2022
- [22] Techniques and materials for high-throughput fabrication and integration of multiparameter flexible skin patches, Advanced Materials Technologies, 8(4):202201051, 2022.
- [23] Continuously Quantifying Oral Chemicals Based on Flexible Hybrid Electronics for Clinical Diagnosis and Pathogenetic Study, Research, 2022:9810129, 2022.
- [24] Magnetically Levitated Flexible Vibration Sensors with Surficial Micropyramid Arrays for Magnetism Enhancement, ACS Applied Materials & Interfaces, 14(33):37916-37925, 2022.
- [25] Thermal Transfer-Enabled Rapid Printing of Liquid Metal Circuits on Multiple Substrates, ACS Applied Materials & Interfaces, 14(32):37028-37038, 2022.
- [26] Techniques to Achieve Stretchable Photovoltaic Devices from Physically Non‐Stretchable Devices through Chemical Thinning and Stress‐Releasing Adhesive, Advanced Optical Materials, 10(18):2200844, 2022.
- [27] Dual-path transformer-based network with equalization-generation components prediction for flexible vibrational sensor speech enhancement in the time domain, The Journal of the Acoustical Society of America, 151(5):2814-2825, 2022
- [28] Micro and Nano Materials and Processing Techniques for Printed Biodegradable Electronics, Materials Today Nano, 18:100201, 2022
- [29] Comparison of enhancement techniques based on neural networks for attenuated voice signal captured by flexible vibration sensors on throats, Nanotechnology and Precision Engineering, 5(1):013001, 2022
- [30] Miniaturized Soft Centrifugal Pumps with Magnetic Levitation for Fluid Handling, Science Advances, 7(44):eabi7203, 2021.
- [31] A Flexible and Stretchable 12-Lead Electrocardiogram System with Individually Deformable Interconnects, Advanced Materials Technologies, 7(3):2100904, 2021.
- [32] Large-area transient conductive films obtained through photonic sintering of two-dimensional materials, Advanced Materials Technologies, 7(2):2100439, 2021.
- [33] Water-Sintered Transient Nanocomposites Used as Electrical Interconnects for Dissolvable Consumer Electronics, ACS Applied Materials and Interfaces, 13(27):32136-32148, 2021.
- [34] Metal-organic frameworks as functional materials for implantable flexible biochemical sensors, Nano Research, 14(9):2981-3009, 2021
- [35] Miniaturized DNA Sequencers for Personal Use: Unreachable Dreams or Achievable Goals, Frontiers in Nanotechnology, 3:628861,2021.
- [36] A Multichannel Flexible Optoelectronic Fiber Device for Distributed Implantable Neurological Stimulation and Monitoring, Small, 17(4):2005925, 2020.
- [37] Reconfigurable flexible electronics driven by origami magnetic membranes, Materials Technologies, 6(4):2001124, 2020
- [38] Fully flexible electromagnetic vibration sensors with annular field confinement origami magnetic membranes, Advanced Functional Materials, 30(25):2001553, 2020.
- [39] Flexible Electronics and Materials for Synchronized Stimulation and Monitoring in Multi-Encephalic Regions, Advanced Functional Materials, 30(32):2002644, 2020.
- [40] Recent development of bioresorbable electronics using additive manufacturing processes, Current Opinion in Chemical Engineering, 28:118-126, 2020
- [41] Anhydride-Assisted Spontaneous Room Temperature Sintering of Printed Bioresorbable Electronics, Advanced Functional Materials, 30(29):1905024, 2020.
- Patents
- [1] 一种集成式磁分离设备,ZL2023106012105,黄显,杨真,胡琛光,杜康,刘新全,林斯
- [2] 基于液滴的无定形态仿生软体机器人及其制备方法,ZL2018113915774,黄显,周明行
-
- [3] 监测面积和深度可变的柔性近红外成像器件及其制备方法,ZL2022106493327,黄显,夏祉强
- [4] 柔性可穿戴式表面肌电传感器,ZL2022104255998,黄显,冯志杰,霍文星
- [5] 注射式生物电信号监测器件,ZL2020106069434,黄显,晚春雪
- [6] 增强磁场的磁铁阵列及其制备方法,ZL2019105289078,黄显,李亚,杨婧萱,祁志杰
- [7] 用于批量电化学聚合的柔性装置,ZL2022104488042,黄显,李雪婷
- [8] 印章式柔性传感器原位制造装置,ZL2021106894830,黄显,冯志杰
- [9] 一种基于折叠薄膜的全柔性电磁式振动传感器,ZL2019113108657,黄显,赵一聪,高胜寒,李娇
- [10] 微米/纳米孔聚合物薄膜的制备方法,ZL 2022110225330,黄显,任苗柠
- [11] 瞬态电子器件的制备方法,ZL2021106356715,黄显,霍文星
- [12] 适用于磁泳分析平台的机器人及制备方法、磁泳分析平台,ZL2023109665955,黄显,杨真,彭竞仪
- [13] 生物可吸收导电油墨及其制备方法、烧结方法,ZL2021106303239,黄显,李佳蒙
- [14] 柔性十二导联心电监测器件及其制作方法,ZL2020106069453,黄显,晚春雪
- [15] 柔性电子器件硬脑膜下植入的辅助装置,ZL2020116442229,黄显,李亚,刘松,周盼,刘忻羽,凌伟,陈兆润
- [16] 柔性磁悬浮微型离心泵,ZL2021104402583,黄显,周明行
- [17] 基于折叠磁性薄膜的磁性驱动天线,ZL 2020116438897,黄显,祁志杰,霍文星
- [18] 基于柔性折叠永磁薄膜的抗肿瘤装置及其使用方法,ZL202010070659X,黄显,徐航
- [19] 基于柔性折叠磁性薄膜的自驱动磁控柔性机器人,ZL2021105816389,黄显,杨婧萱
- [20] 汗液监测传感系统、贴片及其制备方法,ZL2018115087576,黄显,杨晴
- [21] 多方向植入式柔性电子器件及其制备方法,ZL2020116442214,黄显,李亚,周盼,刘忻羽,凌伟,陈兆润
- [22] 磁电柔性连接材料及其制作方法、磁电柔性连接器,ZL2018107208032,黄显,代文婷,徐航
- Honors & Awards
- [1] 天开高教科创园高端科技人才
- [2] 天津大学高水平自然科学类科技创新奖青年科学奖