School of Earth System Science
Professor
院长助理
zhengw3@tju.edu.cn
Rm 308, Building No.16
Zheng, Wang is a "Peiyang scholar" professor of the School of Earth System Science at Tianjin University. He graduated from the University of Science and Technology of China with a B.S. degree in 2004, and from Trent University (Canada) with a PhD degree in 2010. He has been a postdoctoral fellow at Oak Ridge National Lab and University of Toronto, and has worked as a research associate at Arizona State University. His research area is metal stable isotope geochemistry. Particularly, he focuses on the mechanism of metal isotope fractionation, the application of mercury isotopes in tracing the biogeochemical cycle of mercury, and the application of metal isotopes as proxies to understand the evolution of Earth's environment and life. He has published more than 60 peer-reviewed papers on top journals such as PNAS, Nature Communications, Environmental Science and Technology, Geochimica et Cosmochimica Acta, with more than 2600 citations. His current research projects are: 1. Reconstruction of the co-evolution history of Earth and life using redox sensitive metal isotopes; 2. Experimental and theorectical studies on metal isotope fractionation mechanisms; 3. tracing the sources, transport and transformation of contaminants in soil environments using stable isotopes. He has received the national award for excellent young scientist of China in 2021, the 18th "Hou Defeng" young scientist award from the Chinese Society for Mineralogy, Petrology and Geochemistry, and the 2021 Emerging Investigator Award from the International Association of Geochemistry (IAGC). He is an editorial board member of the international journal "Bulletin of Environmental Contamination and Toxicology".
Google Scholar: Zheng, Wang - Google Scholar
- Doctoral degree| Trent University| 2010
- Bachelor’s Degree| University of Science and Technology| 2004
- The mechanism and environmental application of metal stable isotope fractionation
The biogeochemical cycle of Hg
The co-evolution of Earth's environment and life
Development of new isotope systems and analytical technique
- 《Bulletin of Environmental Contamination and Toxicology》Editorial board member
-
2018.11-Now
 School of Earth System Science, Tianjin University | 教授  -
2015.12-2018.10
 Arizona State University | Research Scientist  -
2012.6-2015.12
 University of Toronto | 博士后  -
2010.4-2012.6
 Oak Ridge National Laboratory | 博士后 
- Papers
- [1] Bos, R.*; Zheng, W.*; Lindström, S.; Sanei, H.; Waajen, I.; Fendley, I. M.; Mather, T. A.; Wang, Y.; Rohovec, J.; Navrátil, T.; Sluijs, A.; van de Schootbrugge, B. Climate-Forced Hg-Remobilization Associated with Fern Mutagenesis in the Aftermath of the End-Triassic Extinction. Nat Commun 2024, 15 (1), 3596. https://doi.org/10.1038/s41467-024-47922-0.
- [2] Gong, Q.; Ling, M.-X.*; Zheng, W. Applications of Mercury Stable Isotopes for Tracing Volcanism in the Geologic Record. SCES 2024, 67 (5), 1436–1458. https://doi.org/10.1007/s11430-023-1236-8.
-
- [3] Zhou, Y.; Li, Y.*; Zheng, W.; Tang, S.; Pan, S.; Chen, J.; He, X.-F.; Shen, J.; Algeo, T. J. The Role of LIPs in Phanerozoic Mass Extinctions: An Hg Perspective. Earth-Science Reviews 2024, 249, 104667. https://doi.org/10.1016/j.earscirev.2023.104667.
- [4] Liu, H.; Zheng, W.*; Gao, Y.; Yang, L.; Yue, F.; Huang, T.; Xie, Z.* Increased Contribution of Circumpolar Deep Water Upwelling to Methylmercury in the Upper Ocean around Antarctica: Evidence from Mercury Isotopes in the Ornithogenic Sediments. Environ. Sci. Technol. 2024, 58 (6), 2762–2773. https://doi.org/10.1021/acs.est.3c06923.
- [5] 李鹏飞; 郑旺*; 孟旭男; 张立欣; 孙若愚; 陈玖斌. MC-ICP-MS高阻放大器校正偏移对同位素测试的影响——以汞同位素为例. 矿物岩石地球化学通报 2024, 1–11. https://doi.org/10.19658/j.issn.1007-2802.2023.42.085.
- [6] Han, D.; Wu, Q.*; Wang, S.; Xie, C.; Shi, J.; Zheng, W.; Chen, J.; Tang, Y.; Ouyang, D.; Feng, B.; Wen, M.; Duan, L.; Hao, J. Photochemical Reduction of Particle Bound Mercury in Atmospheric Aerosol Water. ACS EST Air 2024. https://doi.org/10.1021/acsestair.3c00070.
- [7] Xu, L.; Lechte, M.; Shi, X.; Zheng, W.; Zhou, L.; Huang, K.; Zhou, X.; Tang, D.* Large Igneous Province Emplacement Triggered an Oxygenation Event at ∼1.4 Ga: Evidence From Mercury and Paleo‐Productivity Proxies. Geophysical Research Letters 2024.
- [8] Zhang, R.; Sun, R.; Liu, Y.*; Li, S.; Cao, F.; Yang, H.; Chen, S.; Li, X.; Zheng, W.; Chen, J. Mercury Isotope Composition in Open Water Corals of South China Sea: Implication for Atmospheric Mercury Deposition Pathways Into Tropical Oceans. Geophysical Research Letters 2023, 50 (24), e2023GL105305. https://doi.org/10.1029/2023GL105305.
- [9] Wang, Z.; Liao, J.; Gai, P.; Guo, X.; Zheng, W.; Li, X.; Ran, Y.; Wang, Z.; Chen, J.* Metabolisms of Both Inorganic and Methyl-Mercury in Hens Reveal Eggs as an Effective Bioindicator for Environmental Hg Pollution. Journal of Hazardous Materials 2024, 465, 133191. https://doi.org/10.1016/j.jhazmat.2023.133191.
- [10] 王丽娟; 孟梅; 何晟; 郑旺; 孙若愚; 张尧榕; 张可; 蔡虹明; 陈玖斌.* 海洋汞同位素研究进展. 地球科学 2023, 48 (7), 2778–2806.
- [11] Liu, H.; Zheng, W.*; Bergquist, B. A.; Gao, Y.; Yue, F.; Yang, L.; Sun, L.; Xie, Z.* A 1500-Year Record of Mercury Isotopes in Seal Feces Documents Sea Ice Changes in the Antarctic. Commun Earth Environ 2023, 4 (1), 1–10. https://doi.org/10.1038/s43247-023-00921-3.
- [12] Zhang, S.; Wang, H.; Wang, X.; Zheng, W.; Hao, J.; Pogge von Strandmann, P. A. E.; Ye, Y.; Shi, M.; Liu, Y.; Lyu, Y. Subaerial Volcanism Broke Mid-Proterozoic Environmental Stasis. Science Advances 2024, 10 (13), eadk5991. https://doi.org/10.1126/sciadv.adk5991.
- [13] Gao, X.; Yuan, W.; Chen, J.; Huang, F.; Wang, Z.; Gong, Y.; Zhang, Y.; Liu, Y.; Zhang, T.; Zheng, W.(郑旺)* Tracing the Source and Transport of Hg during Pedogenesis in Strongly Weathered Tropical Soil Using Hg Isotopes. Geochimica et Cosmochimica Acta 2023, 361, 101–112. https://doi.org/10.1016/j.gca.2023.10.009.
- [14] Gao, Z.; Zheng, W.(郑旺); Li, Y.; Liu, Y.; Wu, M.; Li, S.; Li, P.; Liu, G.; Fu, X.; Wang, S.; Wang, F.; Cai, Y.; Feng, X.; Gu, B.; Zhong, H.; Yin, Y. Mercury Transformation Processes in Nature: Critical Knowledge Gaps and Perspectives for Moving Forward. Journal of Environmental Sciences 2022, 119, 152–165. https://doi.org/10.1016/j.jes.2022.07.013.
- [15] Zhang, K.; Zheng, W.(郑旺); Sun, R.; He, S.; Shuai, W.; Fan, X.; Yuan, S.; Fu, P.; Deng, J.; Li, X.; Wang, S.; Chen, J. Stable Isotopes Reveal Photoreduction of Particle-Bound Mercury Driven by Water-Soluble Organic Carbon during Severe Haze. Environ. Sci. Technol. 2022, 56 (15), 10619–10628. https://doi.org/10.1021/acs.est.2c01933.
- [16] Shi, M.; Bergquist, B. A.; Zhou, A.; Zhao, Y.; Sun, R.; Chen, J.; Zheng, W.(郑旺)* The Efficiency of Hg Cold Vapor Generation and Its Influence on Hg Isotope Analysis by MC-ICP-MS. J. Anal. At. Spectrom. 2023, 38, 1076–1087. https://doi.org/10.1039/D3JA00056G.
- [17] Sun, R.; Liu, Y.; Sonke, J. E.; Feifei, Z.; Zhao, Y.; Zhang, Y.; Chen, J.; Liu, C.-Q.; Shen, S.; Anbar, A. D.; Zheng, W.(郑旺)* Mercury Isotope Evidence for Marine Photic Zone Euxinia across the End-Permian Mass Extinction. Commun Earth Environ 2023, 4 (1), 1–11. https://doi.org/10.1038/s43247-023-00821-6.
- [18] Zheng, W.(郑旺); Gilleaudeau, G. J.*; Algeo, T. J.; Zhao, Y.; Song, Y.; Zhang, Y.; Sahoo, S. K.; Anbar, A. D.; Carmichael, S. K.; Xie, S.; Liu, C.-Q.; Chen, J.* Mercury Isotope Evidence for Recurrent Photic-Zone Euxinia Triggered by Enhanced Terrestrial Nutrient Inputs during the Late Devonian Mass Extinction. Earth Planet. Sci. Lett. 2023, 613, 118175. https://doi.org/10.1016/j.epsl.2023.118175.
- [19] Zheng, W.(郑旺); Zhou, A.; Sahoo, S. K.*; Nolan, M. R.; Ostrander, C. M.; Sun, R.; Anbar, A. D.; Xiao, S.; Chen, J.* Recurrent Photic Zone Euxinia Limited Ocean Oxygenation and Animal Evolution during the Ediacaran. Nat Commun 2023, 14 (1), 3920. https://doi.org/10.1038/s41467-023-39427-z.
- [20] Liu, H.; Zheng, W.(郑旺)*; Bergquist, B. A.; Gao, Y.; Yue, F.; Yang, L.; Sun, L.; Xie, Z.* A 1500-Year Record of Mercury Isotopes in Seal Feces Documents Sea Ice Changes in the Antarctic. Commun Earth Environ 2023, 4 (1), 1–10. https://doi.org/10.1038/s43247-023-00921-3.
- [21] 郑旺; 周岸文; 孙若愚; 陈玖斌*. 沉积岩汞同位素的古环境指示意义. 科学通报 2023, 68 (6), 628–643. https://doi.org/10.1360/TB-2022-0158.
- [22] 张元明; 郑旺*; 袁圣柳; 张可; 何晟; 陈玖斌. 基于分步热解技术的沉积岩形态汞同位素分析方法. 地球与环境 2022, 1–12.
- [23] AuYang, D.; Chen, J.; Zheng, W.; Lang, Y.; Wang, Y.; Wang, Z.; Zhang, Y.; Liu, Y.; Zhang, K.; Cai, H.; Yuan, W.; Widory, D. Seasonal Variations of the Mercury Multiple Isotopic Compositions of Subrural and Urban Aerosols Highlight an Additional Atmospheric Hg0 Oxidation Pathway. Front. Environ. Sci. 2022, 9, 773327. https://doi.org/10.3389/fenvs.2021.773327.
- [24] AuYang, D.; Chen, J.*; Zheng, W.(郑旺); Zhang, Y.; Shi, G.; Sonke, J. E.; Cartigny, P.; Cai, H.; Yuan, W.; Liu, L.; Gai, P.; Liu, C. South-Hemispheric Marine Aerosol Hg and S Isotope Compositions Reveal Different Oxidation Pathways. Natl Sci Open 2022, 1 (2), 20220014. https://doi.org/10.1360/nso/20220014.
- [25] Zhang, T.; Sun, R.; Liu, Y.; Chen, L.; Zheng, W.; Liu, C.-Q.; Chen, J. Copper and Zinc Isotope Signatures in Scleratinian Corals: Implications for Cu and Zn Cycling in Modern and Ancient Ocean. Geochimica et Cosmochimica Acta 2021. https://doi.org/10.1016/j.gca.2021.10.014.
- [26] Liu, Y.; Chen, J.; Liu, J.; Gai, P.; Au Yang, D.; Zheng, W.; Li, Y.; Li, D.; Cai, H.; Yuan, W.; Li, Y. Coprecipitation of Mercury from Natural Iodine-Containing Seawater for Accurate Isotope Measurement. Anal. Chem. 2021. https://doi.org/10.1021/acs.analchem.1c03060.
- [27] (1) Zhang, H.; Zhang, F.; Chen, J.; Erwin, D. H.; Syverson, D. D.; Ni, P.; Rampino, M.; Chi, Z.; Cai, Y.; Xiang, L.; Li, W.; Liu, S.-A.; Wang, R.; Wang, X.; Feng, Z.; Li, H.; Zhang, T.; Cai, H.; Zheng, W.; Cui, Y.; Zhu, X.; Hou, Z.; Wu, F.; Xu, Y.; Planavsky, N.; Shen, S. Felsic Volcanism as a Factor Driving the End-Permian Mass Extinction. Sci. Adv. 2021, 7 (47), eabh1390. https://doi.org/10.1126/sciadv.abh1390.
- [28] Ostrander, C. M.; Severmann, S.; Gordon, G. W.; Kendall, B.; Lyons, T. W.; Zheng, W.(郑旺); Roy, M.; Anbar, A. D. Significance of 56Fe Depletions in Late-Archean Shales and Pyrite. Geochimica et Cosmochimica Acta 2021. https://doi.org/10.1016/j.gca.2021.10.013.
- [29] Zheng, W.(郑旺); Chandan, P.; Steffen, A.; Stupple, G.; De Vera, J.; Mitchell, C. P. J.; Wania, F.; Bergquist, B. A. Mercury Stable Isotopes Reveal the Sources and Transformations of Atmospheric Hg in the High Arctic. Applied Geochemistry 2021, 131, 105002. https://doi.org/10.1016/j.apgeochem.2021.105002.
- [30] Chen, X.; Romaniello, S. J.; McCormick, M.; Sherry, A.; Havig, J. R.; Zheng, W.(郑旺); Anbar, A. D. Anoxic Depositional Overprinting of 238U/235U in Calcite: When Do Carbonates Tell Black Shale Tales? Geology 2021. https://doi.org/10.1130/G48949.1.
- [31] Kang, J.-T.; Qi, Y.-H.; Li, K.; Bai, J.-H.; Yu, H.-M.; Zheng, W.(郑旺); Zhang, Z.-F.; Huang, F. Calcium Isotope Compositions of Arc Magmas: Implications for Ca and Carbonate Recycling in Subduction Zones. Geochimica et Cosmochimica Acta 2021, 306, 1–19. https://doi.org/10.1016/j.gca.2021.05.014.
- [32] 郑旺; 赵亚秋; 孙若愚; 陈玖斌. 汞的稳定同位素分馏机理. 矿物岩石地球化学通报 2021, 1–24.
- [33] Wang, Q.; Zhang, L.; Liang, X.; Yin, X.; Zhang, Y.; Zheng, W.*(郑旺); Pierce, E. M.; Gu, B.* Rates and Dynamics of Mercury Isotope Exchange between Dissolved Elemental Hg(0) and Hg(II) Bound to Organic and Inorganic Ligands. Environ. Sci. Technol. 2020, acs.est.0c06229. https://doi.org/10.1021/acs.est.0c06229.
- [34] Cao, L.; Zheng, J.; Zhou, Z.; Bu, W.; Wang, Z.; Zheng, W.(郑旺); Yamada, M. Distribution and Behavior of Plutonium Isotopes in Western Pacific Marginal Seas. CATENA 2020, 105023. https://doi.org/10.1016/j.catena.2020.105023.
- [35] Lu, X.; Dahl, T. W.; Zheng, W.(郑旺); Wang, S.; Kendall, B. Estimating Ancient Seawater Isotope Compositions and Global Ocean Redox Conditions by Coupling the Molybdenum and Uranium Isotope Systems of Euxinic Organic-Rich Mudrocks. Geochimica et Cosmochimica Acta 2020. https://doi.org/10.1016/j.gca.2020.08.032.
- [36] Sun, R.; Yuan, J.; Sonke, J. E.; Zhang, Y.; Zhang, T.; Zheng, W. (郑旺); Chen, S.; Meng, M.; Chen, J.; Liu, Y.; Peng, X.; Liu, C. Methylmercury Produced in Upper Oceans Accumulates in Deep Mariana Trench Fauna. Nature Communications 2020, 11 (1), 3389. https://doi.org/10.1038/s41467-020-17045-3.
- [37] Chen, X.; Zheng, W.(郑旺); Anbar, A. D. Uranium Isotope Fractionation (238U/235U) during U(VI) Uptake by Freshwater Plankton. Environ. Sci. Technol. 2020, 54 (5), 2744–2752. https://doi.org/10.1021/acs.est.9b06421.
- [38] Li, C.; Chen, J.; Angot, H.; Zheng, W.(郑旺); Shi, G.; Ding, M.; Du, Z.; Zhang, Q.; Ma, X.; Kang, S.; Xiao, C.; Ren, J.; Qin, D. Seasonal Variation of Mercury and Its Isotopes in Atmospheric Particles at the Coastal Zhongshan Station, Eastern Antarctica. Environ. Sci. Technol. 2020, 54 (18), 11344–11355. https://doi.org/10.1021/acs.est.0c04462.
- [39] Zhang, Y.; Chen, J.; Zheng, W.(郑旺); Sun, R.; Yuan, S.; Cai, H.; Yang, D. A.; Yuan, W.; Meng, M.; Wang, Z.; Liu, Y.; Liu, J. Mercury Isotope Compositions in Large Anthropogenically Impacted Pearl River, South China. Ecotoxicology and Environmental Safety 2020, 191, 110229.
- [40] Kendall, B.; Wang, J.; Zheng, W.(郑旺); Romaniello, S. J.; Over, D. J.; Bennett, Y.; Xing, L.; Kunert, A.; Boyes, C.; Liu, J. Inverse Correlation between the Molybdenum and Uranium Isotope Compositions of Upper Devonian Black Shales Caused by Changes in Local Depositional Conditions Rather than Global Ocean Redox Variations. Geochimica et Cosmochimica Acta 2020, 287, 141–164. https://doi.org/10.1016/j.gca.2020.01.026.
- [41] Ostrander, C. M.; Kendall, B.; Olson, S. L.; Lyons, T. W.; Gordon, G. W.; Romaniello, S. J.; Zheng, W.(郑旺); Reinhard, C. T.; Roy, M.; Anbar, A. D. An Expanded Shale Δ98Mo Record Permits Recurrent Shallow Marine Oxygenation during the Neoarchean. Chemical Geology 2020, 532, 119391. https://doi.org/10.1016/j.chemgeo.2019.119391.
- [42] Gilleaudeau, G. J.; Romaniello, S. J.; Luo, G.; Kaufman, A. J.; Zhang, F.; Klaebe, R. M.; Kah, L. C.; Azmy, K.; Bartley, J. K.; Zheng, W.(郑旺); Knoll, A. H.; Anbar, A. D. Uranium Isotope Evidence for Limited Euxinia in Mid-Proterozoic Oceans. Earth and Planetary Science Letters 2019, 521, 150–157. https://doi.org/10.1016/j.epsl.2019.06.012.
- [43] Zheng, W.(郑旺); Demers, J. D.; Lu, X.; Bergquist, B. A.; Anbar, A. D.; Blum, J. D.; Gu, B. Mercury Stable Isotope Fractionation during Abiotic Dark Oxidation in the Presence of Thiols and Natural Organic Matter. Environ. Sci. Technol. 2019, 53 (4), 1853–1862. https://doi.org/10.1021/acs.est.8b05047.
- [44] Ionov, D. A.; Qi, Y.-H.; Kang, J.-T.; Golovin, A. V.; Oleinikov, O. B.; Zheng, W.(郑旺); Anbar, A. D.; Zhang, Z.-F.; Huang, F. Calcium Isotopic Signatures of Carbonatite and Silicate Metasomatism, Melt Percolation and Crustal Recycling in the Lithospheric Mantle. Geochimica et Cosmochimica Acta 2019, 248, 1–13. https://doi.org/10.1016/j.gca.2018.12.023.
- [45] Zheng, W.(郑旺); Gilleaudeau, G. J.; Kah, L. C.; Anbar, A. D. Mercury Isotope Signatures Record Photic Zone Euxinia in the Mesoproterozoic Ocean. Proc Natl Acad Sci USA 2018, 115 (42), 10594–10599. https://doi.org/10.1073/pnas.1721733115.
- [46] Demers, J. D.; Blum, J. D.; Brooks, S. C.; Donovan, P. M.; Riscassi, A. L.; Miller, C. L.; Zheng, W.(郑旺); Gu, B. Hg Isotopes Reveal In-Stream Processing and Legacy Inputs in East Fork Poplar Creek, Oak Ridge, Tennessee, USA. Environ. Sci.: Processes Impacts 2018, 20 (4), 686–707. https://doi.org/10.1039/C7EM00538E.
- [47] Bu, W.; Ni, Y.; Steinhauser, G.; Zheng, W.(郑旺); Zheng, J.; Furuta, N. The Role of Mass Spectrometry in Radioactive Contamination Assessment after the Fukushima Nuclear Accident. J. Anal. At. Spectrom. 2018, 33 (4), 519–546. https://doi.org/10.1039/C7JA00401J.
- [48] Yang, S.; Kendall, B.; Lu, X.; Zhang, F.; Zheng, W.(郑旺) Uranium Isotope Compositions of Mid-Proterozoic Black Shales: Evidence for an Episode of Increased Ocean Oxygenation at 1.36 Ga and Evaluation of the Effect of Post-Depositional Hydrothermal Fluid Flow. Precambrian Research 2017, 298, 187–201. https://doi.org/10.1016/j.precamres.2017.06.016.
- [49] Yin, R.; Krabbenhoft, D. P.; Bergquist, B. A.; Zheng, W.(郑旺); Lepak, R. F.; Hurley, J. P. Effects of Mercury and Thallium Concentrations on High Precision Determination of Mercury Isotopic Composition by Neptune Plus Multiple Collector Inductively Coupled Plasma Mass Spectrometry. J. Anal. At. Spectrom. 2016, 31 (10), 2060–2068. https://doi.org/10.1039/C6JA00107F.
- [50] Zheng, W.(郑旺); Obrist, D.; Weis, D.; Bergquist, B. A. Mercury Isotope Compositions across North American Forests. Global Biogeochem. Cycles 2016, 30 (10), 1475–1492. https://doi.org/10.1002/2015GB005323.
- [51] Chen, J.; Hintelmann, H.; Zheng, W.(郑旺); Feng, X.; Cai, H.; Wang, Z.; Yuan, S.; Wang, Z. Isotopic Evidence for Distinct Sources of Mercury in Lake Waters and Sediments. Chemical Geology 2016, 426, 33–44. https://doi.org/10.1016/j.chemgeo.2016.01.030.
- [52] Zheng, W.(郑旺); Xie, Z.; Bergquist, B. A. Mercury Stable Isotopes in Ornithogenic Deposits As Tracers of Historical Cycling of Mercury in Ross Sea, Antarctica. Environ. Sci. Technol. 2015, 49 (13), 7623–7632. https://doi.org/10.1021/acs.est.5b00523.
- [53] Zheng, W.(郑旺); Lin, H.; Mann, B. F.; Liang, L.; Gu, B. Oxidation of Dissolved Elemental Mercury by Thiol Compounds under Anoxic Conditions. Environ. Sci. Technol. 2013, 47 (22), 12827–12834. https://doi.org/10.1021/es402697u.
- [54] Hu, H.; Lin, H.; Zheng, W.(郑旺); Rao, B.; Feng, X.; Liang, L.; Elias, D. A.; Gu, B. Mercury Reduction and Cell-Surface Adsorption by Geobacter Sulfurreducens PCA. Environ. Sci. Technol. 2013, 47 (19), 10922–10930. https://doi.org/10.1021/es400527m.
- [55] Hu, H.; Lin, H.; Zheng, W.(郑旺); Tomanicek, S. J.; Johs, A.; Feng, X.; Elias, D. A.; Liang, L.; Gu, B. Oxidation and Methylation of Dissolved Elemental Mercury by Anaerobic Bacteria. Nature Geosci 2013, 6 (9), 751–754. https://doi.org/10.1038/ngeo1894.
- [56] Zheng, W.(郑旺); Lin, H.; Mann, B. F.; Liang, L.; Gu, B. Oxidation of Dissolved Elemental Mercury by Thiol Compounds under Anoxic Conditions. Environ. Sci. Technol. 2013, 47 (22), 12827–12834. https://doi.org/10.1021/es402697u.
- [57] He, F.; Zheng, W.(郑旺); Liang, L.; Gu, B. Mercury Photolytic Transformation Affected by Low-Molecular-Weight Natural Organics in Water. Science of The Total Environment 2012, 416, 429–435. https://doi.org/10.1016/j.scitotenv.2011.11.081.
- [58] Schaefer, J. K.; Rocks, S. S.; Zheng, W.(郑旺); Liang, L.; Gu, B.; Morel, F. M. M. Active Transport, Substrate Specificity, and Methylation of Hg(II) in Anaerobic Bacteria. Proceedings of the National Academy of Sciences 2011, 108 (21), 8714–8719. https://doi.org/10.1073/pnas.1105781108.
- [59] Zheng, W.(郑旺); Hintelmann, H. Nuclear Field Shift Effect in Isotope Fractionation of Mercury during Abiotic Reduction in the Absence of Light. J. Phys. Chem. A 2010, 114 (12), 4238–4245. https://doi.org/10.1021/jp910353y.
- [60] Zheng, W.(郑旺); Hintelmann, H. Isotope Fractionation of Mercury during Its Photochemical Reduction by Low-Molecular-Weight Organic Compounds. J. Phys. Chem. A 2010, 114 (12), 4246–4253. https://doi.org/10.1021/jp9111348.
- [61] Zheng, W.(郑旺); Hintelmann, H. Mercury Isotope Fractionation during Photoreduction in Natural Water Is Controlled by Its Hg/DOC Ratio. Geochimica et Cosmochimica Acta 2009, 73 (22), 6704–6715. https://doi.org/10.1016/j.gca.2009.08.016.
- [62] Gantner, N.; Hintelmann, H.; Zheng, W.(郑旺); Muir, D. C. Variations in Stable Isotope Fractionation of Hg in Food Webs of Arctic Lakes. Environ. Sci. Technol. 2009, 43 (24), 9148–9154. https://doi.org/10.1021/es901771r.
- [63] Zheng, W.(郑旺); Foucher, D.; Hintelmann, H. Mercury Isotope Fractionation during Volatilization of Hg(0) from Solution into the Gas Phase. J. Anal. At. Spectrom. 2007, 22 (9), 1097. https://doi.org/10.1039/b705677j.